If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2=120
We move all terms to the left:
2y^2-(120)=0
a = 2; b = 0; c = -120;
Δ = b2-4ac
Δ = 02-4·2·(-120)
Δ = 960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{960}=\sqrt{64*15}=\sqrt{64}*\sqrt{15}=8\sqrt{15}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{15}}{2*2}=\frac{0-8\sqrt{15}}{4} =-\frac{8\sqrt{15}}{4} =-2\sqrt{15} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{15}}{2*2}=\frac{0+8\sqrt{15}}{4} =\frac{8\sqrt{15}}{4} =2\sqrt{15} $
| 15x+4=−21 | | 45d-6=25.50 | | 9x+2+9=64 | | 12x-6x+5+4x=10x+6 | | 3(6y+7)=57 | | 1/2x+1/9+1/2=32/9 | | 3(2x=+6-2) | | 10^c=1,000 | | 2x/14=28 | | 10y-3y=35 | | 8.8(x-2.5)=-17.6 | | 7z+6-6(z+1)=-(-5z+5) | | (1-0.07)(0.01)x=4.857 | | 6x+10=-2x-17 | | 5(w-4)-7w=-16 | | |3x+11|=17 | | x^2+6x+10=-2x-5 | | 6x-9=63-2x | | -6(g+18)=2(g+2) | | x/20x+18=23 | | x-8.9=3.3 | | 8^x+3=32^x^2-1 | | -60x+1=4 | | 12x=3(4x-8) | | 3(x-1)-3=5x-2(3+x) | | 51/3+3y=7/8 | | 11-t/2=t/3+14 | | 3.5x=735 | | 9(x-6)+8=9x+9 | | -220-4x+14x=80 | | x+1.7=3.9 | | 7x+13+3x-13=180 |